27,681 research outputs found

    Water hyacinths and alligator weeds for removal of lead and mercury from polluted waters

    Get PDF
    Removal of lead and mercury by water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb. was investigated. Water hyacinths demonstrated the ability to remove 0.176 mg of lead and 0.150 mg of mercury per gram of dry plant material from distilled water and river water in a 24-hour period. One acre of water hyacinths is potentially capable of removing 105.6 grams of lead and 90.0 grams of mercury per day. Alligator weeds removed 0.101 mg of lead per gram of dry plant material in a 24-hour period. This same plant also demonstrated the ability to remove a minimum of 0.153 mg of mercury per gram of dry plant material in a six hour period

    Trade Liberalisation, Efficiency and South Africa's Sugar Industry

    Get PDF
    This paper reports the results of a computable general equilibrium (CGE) analysis of the South African sugar industry. The study was inspired by analyses of the EU South Africa Free Trade Agreement that indicated the importance of sugar exports to the welfare gains from agricultural trade liberalisation and by the increasing pressure upon OECD countries to reform their sugar (trade) policies. In addition to the effects of trade liberalisation this study also considers the implications of increases in the efficiency with which sugarcane is converted to raw sugar, which is an important determinant of the competitiveness of sugar production and exports. The results indicate that there would be substantial welfare gains across all household groups and that overall agricultural producers in South Africa should benefit; however there are substantial variations in the impact upon agricultural producers in different provinces, with farmers in some provinces facing reductions in the profitability of farming

    Water Hyacinths for Upgrading Sewage Lagoons to Meet Advanced Wastewater Treatment Standards, Part 1

    Get PDF
    Water hyacinths, Eichhornia crassipes Mart. Solms, have demonstrated the ability to function as an efficient and inexpensive final filtration system in a secondary domestic sewage lagoon during a three month test period. These plants reduced the suspended solids, biochemical oxygen demanding substances, and other chemical parameters to levels below the standards set by the state pollution control agency. The water hyacinth-covered secondary lagoon utilized in this experiment had a surface area of 0.28 hectare (0.70 acre) with a total capacity of 6.8 million liters (1.5 million gallons), receiving an inflow of 522,100 liters (115,000 gallons) per day from a 1.1 hectare (3.8 acre) aerated primary sewage lagoon. These conditions allowed a retention time of 14 to 21 days depending on the water hyacinth evapotranspiration rates. The desired purity of final sewage effluent can be controlled by the water hyacinth surface area, harvest rate, and the retention time

    Energy from aquatic plant wastewater treatment systems

    Get PDF
    Water hyacinth (Eichhornia crassipes), duckweed (Spirodela sp. and Lemma sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 days to an average of 23 days and produced 0.14-0.28 cu m CH4/kg (dry weight) (2.3-4.5 cu ft/lb) from mature filters. The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimum balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations

    Water hyacinths and alligator weeds for removal of silver, cobalt, and strontium from polluted waters

    Get PDF
    Water hyacinths and alligator weeds demonstrated the ability to rapidly remove heavy metals from an aqueous system by root absorption and concentration. Water hyacinths demonstrated the ability to remove 0.439 mg of silver, 0.568 mg of cobalt, and 0.544 mg of strontium in an ionized form per gram of dry plant material in a 24-hour period. Alligator weeds removed a maximum of 0.439 mg of silver, 0.130 mg of cobalt, and 0.161 mg of strontium per gram of dry plant material per day

    Some inelastic effects of thermal cycling on yttria-stabilized zirconia

    Get PDF
    The effects of inelastic behavior of yttria-stabilized zirconia (YSZ) materials were analyzed. The results show these materials to be sensitive to small changes in temperature and are supported by measurements of inelastic behavior in disc and bar specimens at temperatures as low as 1010 C (1850 F). At higher thermomechanical loadings, the test specimens can deform to strains above 1 percent

    Effect of thermal cycling on ZrO2-Y2O3 thermal barrier coatings

    Get PDF
    A study was made of the comparative life of plasma sprayed ZrO2-Y2O3 thermal barrier coatings on NiCrAlY bond coats on Rene 41 in short (4 min) and long (57 min) thermal cycles to 1040 C in a 0.3 Mach flame. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperature as compared to longer cycles. Appearance of the failed coating indicated compressive failure. Failure occurred at the bond coat-ceramic coat junction. At heating rates greater than 550 kw/sq m, the calculated coating detachment stress was in the range of literature values of coating adhesive/cohesive strength. Methods are discussed for decreasing the effect of high heating rate by avoiding compressive stress

    Assessment of variations in thermal cycle life data of thermal barrier coated rods

    Get PDF
    An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa

    Use of fiber like materials to augment the cycle life of thick thermoprotective seal coatings

    Get PDF
    Some experimental and analytical studies of plasma sprayed ZrO2-Y2O3 thick seal thermoprotective materials over NiCrAlY bond coats with testing to 1040 deg C in a Mach 0.3 burner flame are reviewed. These results indicate the need for material to have both compliance and sufficient strength to function successfully as a thick thermoprotective seal material. Fibrous materials may satisfy many of these requirements. A preliminary analysis simulating the simplified behavior of a 25 mm cylindrical SiO2-fiber material indicated significant radial temperature gradients, a relatively cool interface and generally acceptable stresses over the initial portion of the thermal cycle. Subsequent testing of these fiberlike materials in a Mach 0.3 Jet A/air burner flame confirmed these results
    corecore